The Merrimack Wastewater Treatment Facility produces compost from the by-product of the wastewater treatment process. The compost is stockpiled on an impervious pad in windrows for a two-month minimum curing period.

From the North - Take the Everett Turnpike South to exit 10. At the end of the off ramp go left at light to the intersection of D.W. Hwy. South, go right on D.W. Hwy. South for approximately 1.5 mi., watch for black and white sign on left for Wastewater Treatment Facility (Mast Rd.) proceed down hill, go left after entering gate, check in at main building.

From the South - Take the Everett Turnpike North to exit 10. At the end of the off ramp go right on Industrial Drive to light bear right on D.W. Hwy. South follow directions above to Wastewater Facility.

The Merrimack Wastewater Treatment Facility is constantly working to improve our product. In an effort to further this goal we are conducting an Environmental Management System for the biosolids-value chain (compost) facility.

An Environmental Management System involves development of a management system for biosolids that include a method of independent third party verification to ensure effective, on-going biosolids operations. This involves all wastewater personnel and takes one year to complete.

Current Affairs

Merrimack compost is distributed throughout New England and has been used for athletic field construction as remotely from the facility as Cornell University in Ithaca New York. A high profile project employing Merrimack compost was the restoration of the Great Lawn in New York’s Central Park, the largest public works project in the parks history. More locally, Merrimack compost is also found on the Boston Common, and Singer Field in Manchester.

Compost Distribution

The Merrimack Wastewater Treatment Facility staff are available for tours of the wastewater and compost facilities.

The hours are; 8:00 am to 1:00 pm. Group tours are preferred, please call ahead to set up an appointment. We can be reached at 603-883-8196.

Tours

Safety

Compost is safe to use as directed. Wear gloves when handling. Do not let children or pets play in piles.

Current Solid Waste (Sludge) Sources

The Town of Merrimack receives dewatered sludge from Durham and Henniker, as well as dewatered sludge from our own wastewater facility.

Merrimack: 8,351 wet tons
Durham: 1,778 wet tons
Henniker: 263 wet tons

Directions

The Merrimack Wastewater Treatment Facility produces compost from the by-product of the wastewater treatment process in an “in-vessel” agitated bin compost facility. This soil amendment is a Class A biosolid. Sawdust, finished compost and dewatered sludge are mixed together and then processed through the facility, where air is introduced to the mixture. Bacteria biodegrades the rich organic content of the raw sludge and utilizes the sawdust as a carbon source. This activity generates temperatures in excess of 130 degrees f (f) for several days, thus killing disease causing organisms and producing a safe soil conditioner. The compost is stockpiled on an impervious pad in windrows for a two month minimum curing period.

Directions

From the North - Take the Everett Turnpike South to exit 10. At the end of the off ramp go left at light to the intersection of D.W. Hwy. South, go right on D.W. Hwy. South for approximately 1.5 mi., watch for black and white sign on left for Wastewater Treatment Facility (Mast Rd.) proceed down hill, go left after entering gate, check in at main building.

From the South - Take the Everett Turnpike North to exit 10. At the end of the off ramp go right on Industrial Drive to light bear right on D.W. Hwy. South follow directions above to Wastewater Facility.

Current Affairs

The Merrimack Wastewater Treatment Facility is constantly working to improve our product. In an effort to further this goal we are conducting an Environmental Management System for the biosolids-value chain (compost) facility.

An Environmental Management System involves development of a management system for biosolids that include a method of independent third party verification to ensure effective, on-going biosolids operations. This involves all wastewater personnel and takes one year to complete.

Current Solid Waste (Sludge) Sources

The Town of Merrimack receives dewatered sludge from Durham and Henniker, as well as dewatered sludge from our own wastewater facility.

Merrimack: 8,351 wet tons
Durham: 1,778 wet tons
Henniker: 263 wet tons

Safety

Compost is safe to use as directed. Wear gloves when handling. Do not let children or pets play in piles.

Current Solid Waste (Sludge) Sources

The Town of Merrimack receives dewatered sludge from Durham and Henniker, as well as dewatered sludge from our own wastewater facility.

Merrimack: 8,351 wet tons
Durham: 1,778 wet tons
Henniker: 263 wet tons

Directions

From the North - Take the Everett Turnpike South to exit 10. At the end of the off ramp go left at light to the intersection of D.W. Hwy. South, go right on D.W. Hwy. South for approximately 1.5 mi., watch for black and white sign on left for Wastewater Treatment Facility (Mast Rd.) proceed down hill, go left after entering gate, check in at main building.

From the South - Take the Everett Turnpike North to exit 10. At the end of the off ramp go right on Industrial Drive to light bear right on D.W. Hwy. South follow directions above to Wastewater Facility.
Nitrogen (N), phosphorus (P), potassium (K), and calcium (Ca) are four important macronutrients essential to optimum plant growth. Compost used as recommended can provide a continual, gradual release of nitrogen and phosphorous.

The macro-nutrient composition of Merrimack compost is similar to other common materials used in the home garden and commercial nurseries. Because the nutrients in compost are combined with organic matter, these nutrients especially nitrogen, are released as organic matter which slowly breaks down through biological activity. This biological activity is moderated by the environmental conditions that influence plant growth. Thus, as with many organic fertilizers, the plant nutrients tend to be released gradually and in response to the conditions that also stimulate plant growth.

Because of the slow release nature of the compost, only a portion of the nitrogen (about 10 to 15 %) is released for plant use in the year applied. The residual nitrogen is retained in the soil and continues to provide nitrogen for the plant growth over several years. One of the benefits of such gradual release is that nutrient loss through leaching is virtually eliminated, in contrast to commercial inorganic fertilizers, especially nitrate fertilizers.

Suggested uses are as follows:
1. Flower beds
2. Potting mixture for plants and shrubs
3. New and existing lawns
4. Commercial applications such as golf courses and landscaping
5. Top soil production
6. Greenhouse applications
7. Crop propagation and vegetables

Application Rates
Suggested application rate of 1.0 to 1.5 inches of compost will furnish a typical application rate for turf grass establishment. For container crops, field horticultural crops and landscape plantings effective use rates should generally not exceed 25 to 33% of the growing media. The pH range is 6.5 to 7.5. Check compost pH and adjust as needed before using in an application that requires an acidic medium. For field crops such as corn, an application rate of 110 cu. yds. Per acre will furnish about 100 lbs of available nitrogen per acre. Caution should be used when top dressing. Call plant for specific instructions.

How much do I need?
Use the following to determine your need.

\[L \times W \times D = \text{cu.ft.} \]

\[\text{Cu.ft.} / 27 = \text{cu. Yds.} \]

To convert inches to feet use \[\text{inches} / 12 = \text{ft.} \]

\[L= \text{length}, \ W= \text{width}, \ D= \text{depth} \]